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Direct synthesis of 2,5-polychloro-1,2-epoxycyclopentane-
1-carboxylic acids and their alkyl esters
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Abstract—The treatment of 3,3,6,6-tetrachloro-1,2-cyclohexanedione with sodium hydroxide gave 2,5,5-trichloro-1,2-epoxycyclo-
pentane-1-carboxylic acid in almost quantitative yield. 3,6,6-Trichloro-2-hydroxy-2-cyclohexen-1-one was also found to be able
to undergo a similar reaction providing c-2,t-5-dichoro-1,2-epoxy-r-1-cyclopentanecarboxylic acid, whose structure was confirmed
by X-ray crystallographic analysis. The reactions with alkali metal alcoholates gave the corresponding esters in fair to good yields.
In contrast to the properties described for further a-chloroepoxides, the prepared compounds show remarkable stability.
� 2006 Published by Elsevier Ltd.
3,3,6,6-Tetrachloro-1,2-cyclohexanedione 1 is an inex-
pensive and easily available compound whose reactivity
remains little known and whose synthetic usefulness has
scarcely been exploited.1–4 It can be obtained in quanti-
tative yield by direct treatment of commercial trans-
cyclohexane-1,2-diol with chlorine. We recently reported
effective, general new methods for preparing 1,4-di-
chloro- and 1-chlorophenazines starting from this inter-
esting synthetic intermediate.2–4 As a further result of
our research project in the development of organic syn-
theses based on the chemistry of compound 1, the first
synthesis of the title compounds is reported here.

The low capacity of oxiranes to support a halogen atom
linked to any of the oxygenated carbon atoms is well
known. For example, 1-chloroepoxycyclohexane under-
goes a rapid conversion to 2-chloro- and 2-hydroxy-
cyclohexanone on exposure to moist air;5 2-chloro-2,
3-epoxynorbornane is stable at dry-ice temperature,
but on being left at room temperature undergoes a
violent exothermic reaction with the evolution of hydro-
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gen chloride.6 The relatively low stability of this type of
compound, in general, is due to a remarkable proclivity
to undergo a rearrangement leading to a-chlorocarbonyl
derivatives. Sometimes such instability can provoke the
failure of the usual epoxidation reactions, and the corre-
sponding chloroepoxides seem to participate as reactive
intermediates to yield different final reaction products.7

On the other hand, the difficulty of achieving direct
epoxidation of a,b-unsaturated carboxylic acids should
be noted. A HOFÆCH3CN complex seems to be the most
efficient epoxidizing agent for this transformation.8

Given the above, and in order to broaden the synthetic
methodology on this subject, we recognized an opportu-
nity to attempt an approach to the title compounds by
starting from 1 on the basis of an one-pot preparative
process, which involves a benzilic acid rearrangement
step followed by a spontaneous epoxidation of the
generated chlorohydrin intermediates, as is shown in
Schemes 1 and 2.

Treatment of 1 with sodium hydroxide at room temper-
ature9 gave a single product in almost quantitative yield
that was characterized as 2,5,5-trichloro-1,2-epoxycyclo-
pentane-1-carboxylic acid 4 (Scheme 1). This transfor-
mation can be explained by sequential participation of
intermediates 2 and 3. Compound 1 also reacted with
alkali metal alcoholates, leading to the corresponding
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Figure 1. ORTEP of 10, with thermal ellipsoids shown at 50%
probability.
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2,5,5-trichloro-1,2-epoxycyclopentane-1-carboxylic esters
6 in fair to high yields. On studying the course of these
transformations, 1 was treated with potassium t-butox-
ide (ratio 1:1) at low temperature,9 yielding 2,2,5,5-tetra-
chloro-1-hydroxycyclopentane-1-carboxylic acid t-butyl
ester 5 in high yield. This compound was converted
to the corresponding epoxyester 6c by heating in the
presence of potassium t-butoxide.

In an earlier work, we found that 1 can be selectively
dechlorinated via electrochemical reduction to give
3,6,6-trichloro-2-hydroxy-2-cyclohexen-1-one 7 in near
quantitative yield.3,4 Given the possibility of tautomer-
ism between 7 and 8 (Scheme 2), the extension of the dis-
covered synthetic methodology was also investigated. A
nearly quantitative formation of an acidic product was
obtained by treatment of 7 with sodium hydroxide.9 It
was identified by X-ray crystallography10 as c-2,t-5-di-
choro-1,2-epoxy-r-1-cyclopentanecarboxylic acid 10
(Fig. 1) whose generation can be explained by participa-
tion of intermediate 9. The methyl and ethyl esters of 10
(11a, 11b) were also obtained by efficient reactions with
the respective sodium alcoholates.9 These products were
generated, accompanied by small amounts of 3,6-dichlo-
rocatechol 12 which were removed easily by simple
washing with dilute aqueous solution of sodium bicar-
bonate. However, the preparation of 11c by treatment
with potassium t-butoxide failed completely, 12 being
the only product formed. This adverse result may be
due to the relative higher basicity and lower nucleo-
philicity of this particular alcoholate anion.

It should be noted that all the above compounds (car-
boxylic acids as well as esters) were found to be stable en-
ough to be handled and stored without any special care.
It is worth taking into account that various lines of evi-
dence indicate that the rearrangement of chloroepoxides
with chlorine migration proceeds through the formation
and subsequent collapse of an ion pair composed of a
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chlorine anion and an a-ketocarbocation.6,7,11,12 There-
fore, the relative high stability of the compounds pre-
pared here seems to be attributable to the electron
withdrawing effect of carboxyl and alkoxycarbonyl
groups preventing the formation of such ion pairs.

In conclusion, an effective new approach to remarkably
stable a-chloroepoxide derivatives is reported. Not only
are these compounds of interest in themselves, but also
their functional complexity suggests an attractive
synthetic potential to be explored.
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Autónoma de la Región de Murcia (project 03035/PI/
05). The author, M.S.-A., thanks the Fundación Séneca
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